碧波液压网 欢迎你,游客。
登录
注册
菜单
门户
文章
液压传动
气压传动
机械工程
测量与控制
期刊
介质与基础理论
液压件与机具
工业液压传动
液压控制技术
水压与液力传动
车辆与工程机械
气动与密封
故障诊断与检测
现代设计方法
机械工程
科学技术
教程
手册
液压设计手册
机械设计手册
机械设计计算手册
表面工程技术手册
新版机器人技术手册
其它
论坛
登录
注册
门户
>
关键词文章列表
> 聚类系数
神经网络和改进D-S证据理论相结合的滚动轴承复合故障诊断研究
作者:
李善
谭继文
俞昆
来源:
机床与液压
日期: 2020-12-30
人气:117
提出了将神经网络与D-S证据理论相结合的故障诊断方法,实现了故障信号的特征级和决策级融合,并应用于轴承的复合故障诊断研究。将BP、RBF、GRNN 3种神经网络的输出结果作为3个证据体,滚动轴承的4种复合故障特征作为系统的识别框架,引入聚类系数作为权值分配,重新计算基本概率赋值,对D-S证据理论进行改进,以提高轴承复合故障诊断的准确性。
关键词:
滚动轴承
复合故障诊断
神经网络
聚类系数
D-S证据理论
点击下载
共1页/1条