一种基于CNN的滚动轴承退化指标构建方法
针对传统滚动轴承退化指标构建方法高度依赖于人工筛选特征的问题,提出基于卷积神经网络的端到端的滚动轴承性能退化指标构建方法。该方法在Softmax的输出端设置两个节点,分别代表正常和失效状态,以正常状态归一化的幅值谱为训练样本,以待评估数据在正常节点输出概率为基础,构建了滚动轴承性能退化指标。通过在不同实验数据集中的应用,以及与其他指标的对比,验证了该方法的有效性和优越性。
一种基于的滚动轴承退化指标构建方法
针对传统滚动轴承退化指标构建方法高度依赖于人工筛选特征的问题,提出基于卷积神经网络的端到端的滚动轴承性能退化指标构建方法。该方法在Softmax的输出端设置两个节点,分别代表正常和失效状态,以正常状态归一化的幅值谱为训练样本,以待评估数据在正常节点输出概率为基础,构建了滚动轴承性能退化指标。通过在不同实验数据集中的应用,以及与其他指标的对比,验证了该方法的有效性和优越性。
滚动轴承退化指标选取方法研究
针对滚动轴承退化过程指标选取问题,提出了一种基于噪声辅助的多维EMD(Noise-Assisted Multivariate EMD)和主成分分析(PCA)相结合来提取退化指标的方法。该方法首先利用NA-MEMD对同源双通道信号和噪声辅助通道信号进行分解得到一系列多元IMF分量,然后采用相关系数准则选取敏感分量重构信号,其次计算出轴承退化过程中重构信号的退化指标序列,再根据序列的单调性和鲁棒性,选择优良指标进行PCA融合,最后把第一主成分作为反映滚动轴承退化过程的最终指标。对PRONOSITS平台提供的全寿命周期的数据进行分析,结果表明,在滚动轴承的退化过程中,较单一指标,基于NA-MEMD和PCA融合的指标能够比较完整的表征滚动轴承的退化过程。
-
共1页/3条