基于PCA和MK-MOMEDA的特征频率提取算法及其应用
针对柔性薄壁轴承故障特征频率提取的问题,提出了主成分分析(PCA)与多点最优调整的最小熵解卷积(MOMEDA)相结合的特征频率提取算法。算法中用PCA对原始信号作降噪处理,获得重构信号,利用多点峭度(MKurt)提取重构信号中的周期性冲击信号的周期,对理论周期进行修正,进而得到精确的解卷积周期,通过MOMEDA对重构信号进行增强,突出其周期性冲击,可以更有效地提取特征频率。将此方法应用到柔性薄壁轴承的故障特征频率提取上,并与最大相关峭度解卷积(MCKD)算法作对比。结果表明,该方法可将轴承故障冲击与因轴承长短轴交替而产生的周期性冲击分离,消除这种正常的周期性冲击的干扰,有效提取信号中的故障特征频率,效果优于最大相关峭度解卷积算法。
自适应变分模态分解的齿轮箱故障诊断研究
强噪环境下,复合故障特征提取难度更大,VMD(Variational Mode Decomposition)被大量应用于齿轮箱故障诊断中;但是它属于参数型分解方法,K过大或过小都会导致过分解或欠分解现象,因此分解的层数需要自适应的确定。提出了一种多点峭度和VMD的复合故障特征提取方法。考虑到多点峭度可以提取多故障的冲击性周期的个数;周期性冲击个数决定VMD的分解层数K,通过VMD处理后,进一步通过FFT确定故障特征。所提出的自适应复合故障特征提取方法和EEMD(En?semble Empirical Mode Decomposition)对比分析,验证了它可以克服模态混叠的特征,通过对实测性信号处理进一步确定了此方法的有效性。最终确定了齿轮剥落和轴承滚珠等复合故障特征。
-
共1页/2条