碧波液压网 欢迎你,游客。 登录 注册

基于IITD样本熵和支持向量机的齿轮故障诊断方法

作者: 张少波 张海霞 来源:机械设计与制造 日期: 2021-05-31 人气:85
基于IITD样本熵和支持向量机的齿轮故障诊断方法
基于ITD方法的线性变换和Akima插值,提出了一种改进的固有时间尺度分解方法(Improve Intrinsic Timescale Decomposition,简称IITD)方法。齿轮振动信号具有非平稳特征,其典型的故障样本难以获取,为此进一步提出了一种基于IITD样本熵和支持向量机的齿轮故障诊断方法。采用IITD法对非平稳的原始加速度振动信号进行分解,并提取包含主要故障特征信息的PR分量,将其样本熵值作为特征向量;然后将特征向量输入到支持向量机中识别齿轮的故障特征。实验分析结果表明:相比BP神经网络,能更有效地应用于齿轮的故障诊断。

基于IHT与切片双谱的滚动轴承故障诊断方法

作者: 陈光忠 何志坚 来源:机械工程师 日期: 2020-11-10 人气:87
基于IHT与切片双谱的滚动轴承故障诊断方法
针对滚动轴承的故障诊断问题,提出一种基于迭代希尔伯特变换(Iterative Hilbert Transform,IHT)与切片双谱相结合的滚动轴承故障诊断方法。基于IHT方法对原始的振动信号进行了分解,得到若干个含有故障特征信息的幅值包络分量,并对每个幅值包络分量的切片双谱进行计算,由二次相位耦合产生的非线性特征提取出滚动轴承故障的特征频率信息。仿真信号分析结果表明,该方法可有效抑制噪声对IHT方法的影响,诊断效果良好,证明了该方法的有效性。
    共1页/2条