基于GBDT算法的机器人定位误差分级补偿方法
为进一步提高工业机器人的定位精度,提出一种分级补偿的方法以降低几何和非几何因素引起的定位误差。使用遗传算法优化最小二乘法(GA-LS)进行几何参数误差辨识并补偿到机器人运动学模型中,再通过梯度提升树(GBDT)算法对残余非几何参数误差进行预测,并对残余误差进行补偿,最后以UR10机器人为研究对象进行了实验,验证该方法的准确性。实验结果表明此分级补偿方法能有效提高机器人的绝对定位精度,补偿后机器人的平均定位误差由2.381 mm降低至0.156 mm,定位精度提升了93.4%;均方根定位误差由2.417 mm降低至0.163 mm,定位精度提升了93.2%。实验结果验证了此分级补偿方法的有效性。
-
共1页/1条