面向机器人路径规划的改进粒子群算法
针对复杂地图环境下的机器人路径规划问题提出一种聚类融合交叉粒子群算法,以避免传统粒子群算法(Particle Swarm Optimization,PSO)容易陷入早熟且搜索精度差的问题。首先,根据粒子的适应度值对粒子进行k均值聚类,使较多的良性群体极值位置得到保存,从而增强粒子的探索能力;其次,用交叉、变异算子增加粒子多样性,避免在迭代前期粒子陷入早熟导致算法停滞;然后,采用自适应粒子群参数设置,减少粒子走入局部最优概率。最后,对比不同复杂度的地图算例结果发现,改进后的算法最终在安全避开障碍物的同时,具有搜索精度高、稳定性好且路径更优的效果,在路径规划上具有一定的实用价值。
-
共1页/1条