振动趋势判别云模型的故障诊断方法
在汽轮机故障诊断领域,序列数据的变化趋势能够反映振动过程中的运行状态和发展态势,是专家在诊断时经常使用的特征依据。由于汽轮机组本体因结构、工况等导致的故障样本多样性和稀缺性以及专家经验和定性描述相对丰富的诊断现状,提出了一种基于云模型的汽轮机振动时间序列趋势判别方法。通过总结专家经验和故障案例,结合不确定性云模型生成定性趋势的云参数评估模型;利用样本数据通过逆向云得到的云参数生成大量云滴,代入云参数评估模型计算趋势等级确定度;引入趋势判别决策树得到序列数据的定性描述。最后以某亚临界双排汽凝气式汽轮机为研究对象,验证了该方法的可行性和有效性。
-
共1页/1条