基于深度强化学习的机械臂避障轨迹规划研究
针对传统路径规划算法在机械臂避障运动时存在规划时间长、路径冗长等问题,提出了一种基于深度强化学习(Deep Reinforcement Learning,DRL)的运动规划方法。首先,构建了机械臂数学模型和运动环境,并在PyBullet中搭建了DOBOT机械臂与操作环境,设置了DRL所需的奖励函数、动作变量和状态变量等参数。其次,针对静态障碍物规避问题的特点,采用深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法,进行了运动仿真试验。仿真结果表明,相较于快速扩展随机树(Rapid-exploring Random Tree,RRT)算法以及改进RRT算法,所提出的DDPG算法在规划时间和路径长度方面均有一定程度提高。最后,在实验室中采用DOBOT机械臂对DDPG算法在多种障碍物环境下避障操作的有效性进行了验证。
-
共1页/1条