基于DWAE和GRUNN组合模型的变工况齿轮箱故障诊断分析
为了更好地识别噪声与时变转速条件对变工况齿轮箱的故障,开发了一种通过深度小波自动编码器(DWAE)与门控循环单元神经网络(GRUNN)相结合的变工况齿轮箱故障识别方法,其能够从含噪样本自主提取得到鲁棒故障特征;通过Adam与Dropout方法进行训练,通过Softmax分类器对待诊样本的变工况齿轮箱运行状态进行了准确识别。研究结果表明,采用该模型识别齿轮故障时,能够达到有效分离齿轮的6种故障状态,从而满足齿轮状态聚类的优化功能;该模型能够提取出DWAE的鲁棒特征参数,也可以发挥GRUNN以实现消除梯度的效果。当训练样本数增加,待诊样本的准确率也发生了明显提升。样本数超过200后,测试待诊样本可获得稳定准确率,通过DWAEGRUNN方法识别得到的准确率最高。针对变转速工况,该模型可以保持很好的准确率。
-
共1页/1条