基于特征融合与HPO-RVM的滚动轴承剩余寿命预测
为准确预测轴承的剩余使用寿命,提出基于特征融合与猎食者-猎物优化(HPO)算法优化相关向量机的轴承剩余寿命预测方法。提取时域、频域和时频域特征准确描述轴承的退化状态,利用综合评价指标对提取的特征进行筛选得到敏感特征集;采用核熵成分分析对敏感特征进行自适应融合,得到轴承的退化特征;构建混合核函数作为相关向量机的核函数以提高模型预测性能;最后,利用HPO算法得到混合核函数的参数,将寻优得到的参数用于寿命预测模型的训练。通过对轴承加速退化数据集进行实验,结果表明:所构建的寿命预测模型优于BP、ELM、SVM等模型,构造的混合核函数模型优于高斯核函数模型,采用的优化算法优于粒子群、遗传算法等。
-
共1页/1条