基于RBF和BP神经网络的低真空管道高速列车气动阻力预测对比研究
为了实现对低真空管道中运行列车的最大阻力预测研究,本文采用数值仿真和神经网络结合的方法。选取不同阻塞比、运行速度和管道压力,利用流体仿真软件计算100种运行工况下列车的最大阻力;以96组仿真数据作为网络模型训练样本,选取RBF和BP两种三层神经网络,经多次调试确定最佳隐层神经元数目,利用训练函数训练两种预测模型;利用随机选取的4组验证样本验证两种网络模型。研究表明:RBF和BP神经网络模型能较好的预测列车在真空管道中运行的最大阻力,其中RBF神经网络预测值的最大误差不高于5%,相比BP神经网络,RBF预测精度更优。
-
共1页/1条