基于IFOA-SVM的轴承故障分类识别方法
为了更好地准确识别轴承故障特征非线性分类问题,提出了一种基于IFOA-SVM的故障分类识别方法。使用变分模态分解方法对轴承振动信号进行分解处理,以模态分量的模糊近似熵和能量熵构成故障特征向量;基于"一对一"策略拓展设计了OVO-SVM多分类器,构造多项式核函数和径向基核函数组合的混合核函数,使用IFOA算法对SVM分类器的核函数比例系数λ、径向基核函数宽度参数σ、惩罚因子C等关键参数进行优化,构建IFOA-SVM故障分类识别模型;提出了轴承故障识别流程。结果表明,该方法可以实现对轴承故障特征准确高效的识别。
-
共1页/1条