基于神经网络和证据融合的液压泵故障诊断研究
针对单一传感器检测易受到环境干扰,很难准确分辨出液压泵故障类型的问题,将神经网络分类识别及证据理论融合技术应用到液压泵故障诊断中。对自适应调节方法优化的粒子群神经网络(PSO-BP)故障分类、D-S证据理论中融合悖论及失效问题的改进进行了研究;使用认知因子、社会因子动态指导粒子寻优,并利用引力思想构造两条故障证据间新的冲突系数,进而提出了符合液压泵故障诊断的多源传感器数据融合模型;通过实验构造液压泵的6种运行状态并分别进行了故障诊断测试。研究结果表明:使用自适应调节方法优化的粒子群神经网络对液压泵的故障诊断准确率有所提高,分别达到93.50%、93.67%,融合诊断结果支持度均接近1,降低了诊断的模糊性。
-
共1页/1条