改进SURF匹配算法在并联机器人中的研究
针对传统机器人中图像匹配方法准确率低、匹配时间长的问题,提出一种新型的基于机器视觉进行加速稳健性特性(SURF)的改进算法。以SURF特征点检测为基础,利用增强高效局部图像描述符(BEBLID)替换描述子,实现高维到二值化的转换;以自适应设定阈值方法降低人为设定对匹配产生的影响,结合渐进一致采样(PROSAC)优化策略对误匹配点对的剔除方法,获取有效的匹配点对。实验结果表明:与近几年改进算法相比,该算法在正确匹配率和匹配时间上分别提高了12.06%、
-
共1页/1条