碧波液压网 欢迎你,游客。 登录 注册

均匀粒子群蚁群融合算法的机器人路径规划

作者: 房德君 来源:机械设计与制造 日期: 2020-12-23 人气:137
为了提高移动机器人点对点路径规划的性能,提出了均匀粒子群蚁群融合算法。首先分析了粒子群算法原理,找出了导致算法“早熟”的搜索机制缺陷,提出了均匀粒子群算法,此算法改进了粒子群算法的搜索机制,保证了在迭代过程中的粒子多样性,克服了算法“早熟”问题;介绍了蚂蚁系统和蚁群系统算法的区别,提出了均匀粒子群蚁群融合算法,首先使用均匀粒子群算法搜索次优路径,在此路径上撤播信息素,然后使用蚁群算法寻找最优路径。实验结果表明,融合算法规划出的路径最短,而且迭代效率高、容错能力强。

基于熵聚类RBF神经网络的机械臂轨迹跟踪控制

作者: 房德君 来源:机械设计与制造 日期: 2020-12-22 人气:160
为了提高机械臂轨迹跟踪控制的快速性和精确性,提出了基于熵聚类神经网络算法的机械臂运动控制器。分析了RBF神经网络原理,使用熵聚类算法得到原始数据的聚类中心数和聚类中心值,从而确定了神经网络结构和基函数中心值,避免了传统算法中使用K-means方法的重复迭代过程,使用梯度下降法调整神经网络传递权值;将神经网络辨识与神经网络控制相结合提出了机械臂运动控制器;经实验验证可以看出,相比于传统的RBF神经网络方法,基于熵聚类神经网络算法的控制器在轨迹跟踪快速性和精度上均具有明显优势。
    共1页/2条