LMD支持向量机电机轴承故障诊断研究
针对支持向量机(SVM)对处理大样本数据和多分类问题以及核函数选择的局限性,提出LMD支持向量机电机轴承故障诊断方法。首先应用局域均值分解(LMD)算法对信号进行自适应分解,得到一系列PF分量,并利用相关分析剔除虚假分量,提取真实PF分量能量组成特征向量;其次应用新的核函数对SVM进行改进,实现自适应的训练,并针对大样本数据和多分类问题采用‘一对多’的方法;最后以特征向量作为改进SVM的训练样本和测试样本,对电机轴承故障信息进行训练,预测。实验验证,该方法能有效的对电机轴承故障进行自适应的诊断。
-
共1页/1条