基于灰色模型和RBF神经网络的MEMS陀螺温度补偿
MEMS陀螺的零偏随温度呈非线性变化,同时含有较大的随机噪声。针对传统的多项式模型难以精确表达零偏随温度变化的问题,提出了一种基于灰色模型和RBF神经网络的MEMS陀螺温度补偿方法:首先用灰色模型对数据进行预处理,以减小原始数据的噪声;然后用降噪后的样本数据对RBF神经网络进行训练。在相同的训练次数下训练误差可减小一个数量级。验证试验结果表明,采用该模型补偿后的陀螺零偏误差较传统的多项式模型减小一个数量级,较未经预处理的RBF神经网络减小2/3。
航空用多传感器组合导航信息融合的研究
在已有的SINS/GPS组合导航系统的基础上,将联邦kalman滤波算法与组合高度三阶回路算法动态结合,并利用改进型自适应滤波算法对系统进行实时系统噪声和量测噪声水平估计和修正,实现了SINS/GPS/高度计/磁罗盘多传感器组合导航系统有效融合。所设计系统综合利用了各传感器的优点,克服了各传感器的缺点,并能实时正确地测得载体的三维速度、位置和姿态信息,尤其是高度通道上的速度和位置信息,使多传感器组合导航系统能长时间、有效、稳定地进行飞行导航。经半实物仿真实验表明,所设计的组合导航系统具有较好的稳定性和较高的精度。
-
共1页/2条