基于特征可视化和深度自适应网络的轴承故障诊断
针对轴承故障诊断中,特征提取环节严重依赖人工经验及专家知识的问题,提出了一种基于格拉姆角场(Gramian angle field,GAF)变换和自适应深度网络的轴承故障诊断方法。首先,通过经验模态分解方法对采集信号进行分析,通过马氏距离度量方法有效地确定本征模函数(Intrinsic mode functions,IMFs),将染噪信号与原始信号的相似模态分量进行挑选,以提高染噪信号信噪比,剔除不同类别信号的相似模态分量,突出信号特征;然后,利用选定的IMFs将信号重构,并基于GAF变换将重构信号可视化;最后,利用深度自适应网络进行特征学习和状态识别。结果表明,所提方法的准确率达到94.97%,优于常见的振动信号故障诊断方法;且所提方法对于噪声也能很好地抑制,具有较好的鲁棒性,为轴承的智能化和精确化诊断提供了合理思路。
-
共1页/1条