基于仿生群智能优化RBF神经网络的机械手滑模控制方法研究
为了提高机械手滑模控制的准确度,采用RBF神经网络来完成机械手滑模控制,并借助群体智能算法中的混合蛙跳算法来实现模型参数的优化。在机械手滑模控制及机械手运动轨迹跟踪过程中,将RBF神经网络权重和阈值作为蛙跳算法的青蛙个体,随机产生的多个权重和阈值组合个体构成蛙群,并对蛙群进行分组,通过不断重新分组和组内迭代的方法来获取全局最优个体,得到最优权重和阈值,确定最优机械手滑模控制模型。经过实验证明,采用基于仿生群智能优化RBF神经网络的机械手滑模控制,跟踪准确度高。
-
共1页/1条