基于PSO-ACO融合算法的物流车辆路径优化与控制研究
传统蚁群算法在解决物流配送路径问题时容易出现“早熟”问题,使路径寻找速度和优化结果受到影响。为更合理进行车辆路径调度管理,提出一种粒子群-蚁群相融合的物流配送路径规划算法,该算法充分利用粒子群较强的全局搜索能力和搜索速度快的特点,将得到的次优解转化为蚁群算法中的初始信息素的增量,最后利用蚁群算法的正反馈机制求解问题的精确解。研究结果表明:与单一算法相比,融合算法能快速有效地确定物流配送路径,具有较快的寻优速度和收敛精度,更合理的控制物流配送成本。
-
共1页/1条