Q-learning算法下的机械臂轨迹规划与避障行为研究
机械臂运动和避障中存在轨迹偏差,要通过适当控制算法加以纠正确保实际轨迹趋近于理想轨迹。提出基于改进Q-learning算法的轨迹规划与避障方案,分别构建状态向量集合和每种状态下的动作集合,利用BP神经网络算法提高模型的连续逼近能力,并在迭代中不断更新Q函数值;路径规划中按照关节旋转角度及连杆空间移动距离最小原则,实现在合理避障同时轨迹偏差度最低。仿真结果表明:提出的控制算法收敛性速度快,路径规划效果优于传统规划方案,偏移成本最低。
-
共1页/1条