碧波液压网 欢迎你,游客。 登录 注册

基于多传感器数据融合和深度残差收缩网络的轴向柱塞泵故障诊断

作者: 陈琳伟 应娉婷 汤何胜 任燕 向家伟 来源:液压与气动 日期: 2024-03-28 人气:128
基于多传感器数据融合和深度残差收缩网络的轴向柱塞泵故障诊断
为了解决单传感器振动信息不能全面表达柱塞泵故障特征信息的问题,提出了一种基于多传感器数据融合深度残差收缩网络学习的轴向柱塞泵故障诊断方法。首先,采用多传感器对振动信号进行采集,完善振动信号的故障特征信息。其次,针对振动信号的非平稳、非线性等特征,提出基于多元多尺度散布熵的多通道融合方法,获取一维故障特征向量,从而达到增强故障冲击特征的目的。然后,将故障特征向量输入到深度残差收缩网络模型,通过注意力机制,利用软阈值函数降低样本噪声及无关特征干扰,实现轴向柱塞泵故障特征识别。最后,通过轴向柱塞泵故障诊断试验验证所提方法的有效性。试验结果表明,该方法可有效提取振动信号的故障特征,识别正确率明显高于典型的深度学习方法。

噪声干扰下基于二维特征图和深度残差收缩网络的齿轮箱故障诊断

作者: 李晓峰 向辉 杨青桦 来源:机床与液压 日期: 2021-03-07 人气:63
噪声干扰下基于二维特征图和深度残差收缩网络的齿轮箱故障诊断
针对噪声环境下一维卷积神经网络单一卷积拓扑结构难以准确诊断齿轮箱故障的难题,提出一种基于二维特征图和深度残差收缩网络(TM-DRSN)的故障诊断方法。根据采集到的齿轮箱振动信号,基于重叠采样方法获取故障数据样本,并分为训练集和测试集;基于横向插样法将一维数据样本构建成便于DRSN输入的二维特征图,在DRSN输入层构建宽卷积核层作为第一特征提取层;将残差收缩模块加入深度卷积神经网络中替换由传统卷积和池化组成的特征提取层;叠加多个残差收缩模块得到深度残差收缩网络模型;将构建的DRSN用于噪声环境下的轴承故障诊断试验。结果表明:TM-DRSN方法的故障诊断精度优于其他对比方法。
    共1页/2条