基于改进乌燕鸥算法的移动机器人路径规划
为克服传统智能算法在解决复杂环境下移动机器人路径规划问题中存在的搜索效率慢和寻优精度低等不足,提出改进乌燕鸥优化算法(ISTOA)。以乌燕鸥算法(STOA)为基础,引入Circle混沌映射机制保证初始种群的质量,提升算法初期搜索效率。同时,提出旋转式翻筋斗搜索策略,对算法的扑食位置进行更新,提高了算法的局部寻优能力。在迁徙过程中,混合正弦控制非碰撞因子和自适应Lévy飞行策略平衡了算法的全局搜索和局部搜索。通过3种不同环境下移动机器人路径
-
共1页/1条