一种自适应频率窗经验小波变换的滚动轴承故障诊断方法
为解决强背景噪声下经验小波变换(EWT)难以准确提取滚动轴承故障特征的问题,提出了一种自适应频率窗EWT方法。首先对轴承故障振动信号进行傅里叶变换,引入一个带宽可变的滑动频率窗对其频谱进行分割;然后利用水循环优化算法(WCA),通过所提出的包络谱谐波噪声比指标,自适应确定滑动频率窗位置;最后进行EWT筛选出最佳的模态分量信号,通过包络解调分析提取轴承故障特征信息。采用所提方法对滚动轴承故障实验信号进行分析,结果表明,该方法可以有效用于滚动轴承微弱故障特征的提取,而传统EWT方法因为受强背景噪声影响较大,无法准确提取故障特征信息。
-
共1页/1条