改进Hilbert-Huang变换的滚动轴承故障诊断
以自适应噪声完备集合经验模态分解(CEEMDAN)为基础,提出了一种改进的Hilbert-Huang变换(HHT)时频分析法。对滚动轴承振动信号进行CEEMDAN获得一组本征模态函数(IMF)。通过自动提取敏感IMF算法,筛选特征敏感IMF分量,计算特征敏感IMF分量的Hilbert包络谱和HHT二维时频谱,提取故障特征频率信息。研究结果表明CEEMDAN算法有效降低了模态混叠,比经验模态分解(EMD)算法和集合经验模态分解(EEMD)算法具有优越性。将改进的HHT与自动提取敏感IMF算法相结合,可以有效分解信号的特征信息,筛选出含有故障特征信息的敏感IMF,剔除背景噪声和无故障IMF的干扰,有效提取轴承振动的故障特征频率,诊断出轴承故障的发生部位。
-
共1页/1条