基于CPFs的齿轮箱复合故障特征提取
由于方法选择不当,齿轮箱中复合故障的特征提取会出现漏诊断或误诊断现象,LMD(Local mean deconvolution)对信号分解时由于噪声影响,会出现EMD(Empirical mode decomposition)相似的模态混叠现象,常导致能量泄漏或误诊现象。提出了一种CPFs-MOMEDA(Combined physical functions-Multipoint optimal minimum entropy deconvolution adjusted)的齿轮箱复合故障诊断方法。首先通过LMD对原信号降噪,得到一系列的PFs,通过相关系数法剔除虚假分量和残余成分;计算每层PF(Production function)的多点峭度,提取故障特征周期,将不含周期性冲击的PFs二次剔除,为了保持原信号的完整性,通过组合乘积函数方法重新组合具有相同周期的PF;最后设定不同的周期区间,通过MOMEDA对组合后的信号降噪,进一步提取故障特征。并将此方法应用在齿轮箱复合故障特征提取中,验证了此方法的可行性。
-
共1页/1条