碧波液压网 欢迎你,游客。 登录 注册

基于EEMD-PCA-LSTM滚动轴承故障识别与分类方法的研究

作者: 杨淑洁 周杨 来源:机械工程师 日期: 2024-05-30 人气:94
基于EEMD-PCA-LSTM滚动轴承故障识别与分类方法的研究
滚动轴承在发生故障时,故障振动信号具有非稳定性、非线性的特点,难以对其中的故障特征进行提取,导致轴承故障诊断的识别率较低。为了提高滚动轴承故障分类的准确率,提出了一种基于集合经验模态分解法(Ensemble Em pirical Mode De com pos ition, EEMD)与长短时记忆(Long Short Te rm Me m ory, LSTM)神经网络相结合的滚动轴承故障识别的方法。首先采用EEMD算法将目标振动信号分解成若干个本征模态函数(Intrinsic Mode Function, IMF)分量。然后利用主成分分析法(Principal Component Analysis, PCA)对IMF分量进行降维,选取含有主要故障特征信号的分量。最后计算IMF主成分分量占各自总能量的比例,并将能量比所组成的特征向量作为LSTM神经网络的输入参数进行故障识别。将识别的结果与不同的故障诊断模型所得的结果进行对比分析,仿真结果表明文中所用的方法在轴承故障诊断中准确...
    共1页/1条