碧波液压网 欢迎你,游客。 登录 注册

基于改进SSD降噪的滚动轴承故障特征提取

作者: 王续鹏 孙虎儿 来源:机械传动 日期: 2024-06-29 人气:155
针对强背景噪声下滚动轴承早期微弱故障特征难以提取以及奇异谱分解方法分解的分量仍然包含噪声的问题,提出了一种奇异谱分解(Singular spectrum decomposition,SSD)和最大循环平稳盲解卷积(Maximum cyclostationarity blind deconvolution,CYCBD)相结合的滚动轴承微弱故障特征提取方法。由SSD方法将轴承振动信号自适应地分解为从高频到低频的奇异谱分量;根据分量峭度最大原则,筛选出最佳分量;再利用CYCBD对最佳分量后处理进一步降噪;进而对降噪后的信号进行Hilbert包络解调分析,得到故障特征频率。仿真和实验分析表明,该方法能有效提取滚动轴承早期微弱故障特征。

基于CYCBD和包络谱的滚动轴承微弱故障特征提取

作者: 蔡小亮 来源:机械传动 日期: 2024-06-17 人气:188
针对在强噪声的干扰下,滚动轴承微弱故障特征难以有效地提取的问题,提出一种基于最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationarity Blind Deconvolution,CYCBD)和包络谱相结合的微弱故障特征提取方法。首先,由故障特征频率设置合理的循环频率集,使用CY-CBD对含有强噪声的微弱故障冲击信号进行降噪处理,增强信号中的周期性冲击成分;然后,对降噪信号进行Hilbert包络谱分析来识别故障特征频率。通过仿真和实验,结果证明,该方法能有效地提取被强噪声淹没的微弱故障特征。
    共1页/2条