电视USB支架的模流分析及模具设计
以长条状的电视USB支架为例,其含有多孔和多个狭长凸台。利用moldflow软件从塑件的填充时间、流动前沿温度和翘曲变形三个方面对三种浇口设计方案进行对比分析,最终采用一模两腔和三个潜伏式浇口的最佳工艺方案。采用斜导柱侧向抽芯机构和斜顶杆抽芯机构分别成形带有侧孔和卡勾的狭长凸台。针对其他狭长凸台末端的气穴,采用成形镶块的间隙进行排气。利用UG软件设计模具各个结构,设计的模具结构合理,工作可靠。通过最终成形的产品验证了分析结果的正确性和模具设计方案的可行性。
液压缸临界载荷计算和最优设计
针对液压缸活塞杆与缸体由于受轴力和横向力的共同作用而产生弯曲变形导致液压缸整体失稳的问题,分别对活塞杆和缸体建立挠曲性微分方程,确定活塞杆与缸体间隙处最大挠度,再建立关于挠度的非线性方程组,获得计算液压缸临界载荷的超越方程。结合参数化有限元优化设计技术,获取体积约束条件下液压缸的合理尺寸,通过与Ritz法计算结果比对和实验验证可知,该算法能够较好地优化液压缸结构参数,满足工程实际应用需要。
液压缸临界载荷计算
液压缸可视为细长杆构件,通过建立整体稳定性的力学模型,导出了一种便于实际应用的临界载荷的计算公式,并进一步计算出实际工作载荷。
基于小挠度曲线微分方程的液压缸稳定性分析
液压缸是做伸缩运动的执行装置,可视为承受轴向压缩的细长压杆,其稳定性影响机构可靠性。根据液压缸约束及受力情况,利用小挠度曲线微分方程,推导液压缸稳定性表达式。
基于状态向量矩阵传递液压缸抗失稳研究
液压缸在工程上可视为承受轴向压缩的阶梯细长压杆,其稳定性影响机构可靠性.液压缸由直径不同的缸体和活塞杆构成,把液压缸的每段结构视作1个受压单元,受压单元中的弯矩和剪力分别表示为状态向量,求出单元矩阵,通过各单元传递矩阵相乘,获得活塞杆2端的状态向量关系,根据液压缸不同约束条件,推导液压缸稳定性普遍方程.结合MATLAB优化设计技术,获取体积约束条件下液压缸的合理尺寸,通过和Ritz法计算结果比对,并进行模型实验验证,表明该方程计算结果接近准确值.
非线性耦合力作用下液压马达低速波动机理分析
通过动力学模型和试验,分析了液压马达低速波动的机理和产生条件,认为非线性液压弹簧力和非线性摩擦力的耦合作用是液压马达低速波动主要原因;通过试验研究了非线性摩擦扭矩、泄漏系数、粘性阻尼系数、油液压缩系数等因素对液压马达低速波动的影响,揭示出液压马达低速波动是在负特性摩擦阻力工况下的自激振动现象,并提出了改善液压马达低速稳定性的措施。
基于矩阵传递的液压缸稳定性分析及参数优化
液压缸由直径不同的缸体和活塞杆构成,工程上可视为承受轴向压缩的阶梯细长压杆,须进行稳定性校核.把液压缸的每段结构视作一个受压单元,受压单元中的弯矩和剪力都分别表示二维状态向量的单元矩阵,通过各单元传递矩阵相乘,获得受压状态活塞杆两端的状态向量关系,根据液压缸两端约束条件,推导液压缸稳定性普遍方程.结合MATLAB参数优化技术,获取体积约束条件下液压缸的最优尺寸,通过和Ritz法计算结果、模型实验实测值比对,表明该计算结果更接近准确值.
基于小挠度曲线微分方程的液压缸稳定性分析
液压缸是做伸缩运动的执行装置,可视为承受轴向压缩的细长压杆,其稳定性影响机构可靠性。根据液压缸约束及受力情况,利用小挠度曲线微分方程,推导液压缸稳定性表达式。
基于矩阵传递的液压缸稳定性分析及参数优化
液压缸由直径不同的缸体和活塞杆构成,工程上可视为承受轴向压缩的阶梯细长压杆,须进行稳定性校核.把液压缸的每段结构视作一个受压单元,受压单元中的弯矩和剪力都分别表示二维状态向量的单元矩阵,通过各单元传递矩阵相乘,获得受压状态活塞杆两端的状态向量关系,根据液压缸两端约束条件,推导液压缸稳定性普遍方程.结合MATLAB参数优化技术,获取体积约束条件下液压缸的最优尺寸,通过和Ritz法计算结果、模型实验实测值比对,表明该计算结果更接近准确值.