结合频谱聚类与经验小波的轴承故障诊断方法
实测轴承振动信号就有非平稳、非线性特征,因此,对该类信号的分析需要进行解调得到特征频率,在众多解调法中包络分析是最为常用的方法;为了使解调结果更加清晰,常在解调前进行滤波,达到滤除干扰成分可有效提升解调的效果。经验小波变换提供了基于频带划分的小波滤波框架,划分后频带可滤除部分干扰信号,突出故障信号。对此,受“箱型图”和层次聚类法的启发,对“突出值”聚类法进行频带划分,通过平方包络互相关系数选取合理的频带划分个数。最后选取平方包络峭度值最大的滤波子信号进行Teager能量算子解调,获取特征频率。文章针对不同工况下的不同故障类型轴承运行数据进行分析,验证算法的有效性。特别地,在复合故障分析中,利用动态阈值法到达分别突出不同轴承故障频率的效果。
考虑数据不平衡的轨道交通装备液压系统内泵泄漏智能诊断方法研究
针对液压系统内泵泄漏诊断的数据集不平衡问题,提出了一种两阶段处理方法,使用变分编码器对少数类样本进行合成,将少数类故障样本补全到和正常样本一致。再使用焦点损失对故障分类模型进行训练,增强分类器对难分类样本的诊断能力。所提出方法经过消融实验验证,能够有效处理不平衡数据集。
-
共1页/2条