基于Blending集成学习的多源信息液压系统多类故障诊断研究 作者: 杜凯乐 朱为全 陈瑞宝 刘丽珊 来源:模具制造 日期:2024-04-03 人气: 关键词: Blending集成学习 液压系统 故障诊断 版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。 信息 资料大小 1.58 MB 文件类型 PDF 语言 简体中文 资料等级 ☆☆☆☆☆ 下载次数 简介 针对传统故障诊断方法准确性不高、耗时长问题,研究通过多个EfficientNet模型对传感器数据进行预训练,并使用XGBoost作为元学习器,提出了一种基于Blending集成学习的多源信息液压系统多类故障诊断方法。实验结果表明,各个子分类器在训练次数达到300次后趋于收敛,准确率均达到95%左右。该方法具有较高的准确性和鲁棒性,为液压系统故障诊断提供了一种有效的解决方案。 进入下载地址列表 标签: 点赞 收藏 上一篇 下一篇 相关论文 发表评论 请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。 中立 好评 差评 用户名: 验证码: 匿名? 发表评论 最新评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。